
Control of the Tiago robot using Pose

Estimation and Position-based visual servoing

Stevedan Ogochukwu Omodolor1 and Alberto Sanfeliu
Cortes1

1*Mobile robotics and intelligent system department, Institut de
Robòtica i Informàtica Industrial, CSIC-UPC, Parc Tecnològic de

Barcelona. C/ Llorens i Artigas 4-6,, Barcelona, 08028,
Catalonia, Spain.

Contributing authors:
stevedan.ogochu.omodolor@estudiantat.upc.edu;

alberto.sanfeliu@upc.edu;

Abstract

In this paper, a strategy to control the position of the end-effector and the
mobile base of the Tiago robot using visual feedback from a stereo camera
is explained. To accomplish this, position based visual servoing technique
is employed base on the estimation of position and depth information of
the object been tracked. In order to ensure smooth position estimation,
multple tecniques like median filtering and kalman filter was used.

Keywords: visual servoing, position based image servoing,kalman filter,
median filtering

Introduction

The idea of visual servoing consist of controlling the motion of a robot
using information obtained from a computer vision feedback system. The
visual data can come from a camera placed directly on the the robot’s end-
effector(eye-in-hand configuration) or placed in a fixed position in the work
space(fixed-camera configuration). The basic ideal of visual servoing consists
of the minimization of an error value. The different visual-servoing techniques

1

2

differ with respect to the error function defined. In position-based image visual
seroving(PBVS), the error function is specified based on position value in the
robot task space. In Image-Based Visual servoing, the error function is defined
in terms of image features [1]. Although, IBVS is considered favorable com-
pared to PBVS due to it low sensitivity to camera calibration errors[2], PBVS
method was used. This is due to the limitation with respect to the control
layer of the Tiago robot.

1 Methods

The goal of this paper is implement a visual servoing strategy to track an
object using visual feedback executed on the Tiago robot. To accomplish this,
multiple control strategy is employed all of which is based on the 3D estima-
tion of the object being tracked(Tube marked with Red color). With respect to
the controller, two different control strategy are used: whole body controller to
control the position of the whole robot body and a velocity controller for the
based. It is worth mentioning that the implementation is implemented using
ROS. In the following section, each of the element used during the implementa-
tion of this project is explained. A full schematic of the overall implementation
can be seen in Figure 1. It consist of two different nodes: one responsible
for the generation of the 3D pose of the object with respect to the camera
link(tube tracking alg node) and the other responsible for the control of the
robot(visual servoing control alg).

Fig. 1: Schematic of the code design.

1.1 Setup

During the experiment, the eye-in-hand configuration was used as shown
in Figure 2. Appropriate cable length and size should be used during test-
ing because it affects the resolution and range of view of the camera, which
in turn affects the camera intrinsic parameter. This value is used during the
computation of the 3D pose of the object being tracked. Although the cur-
rent implementation takes this into consideration and further modification is
needed in the code when a different cable is used.

3

Fig. 2: Camera location based on the eye-in-hand configuration

1.2 Tube tracking algorithm node

The goal of the section is to detail the necessary step in order to obtain the
position in 3D space of the tube(Figure 3) using the realsense D435i camera.
The is painted with color red to simplify detection.

Fig. 3: Tube detected

1.2.1 Pose estimation

To obtain the 3D pose, first color detection is used to isolate the red color
from the background . To do this, the following steps were made: preprocessing,
color detection, morphological operation and feature detection. An in-depth

4

explanation of each of these steps can be found in [3]. The resulting feature
can be seen in Figure 4. This corresponds to the centroid and width of the
three sections of the tube painted red. The point of interest been tracked is
the centroid of the middle triangle.

Fig. 4: Image after obtaining the feature point and contours

Using the technique explained [3], the depth value of each of the centroid
is extracted for depth value outside of the working range of the realsense
camera. With the depth value and the image pixel location of the two outer
centroid, the roll and pitch of the tube with respect to the camera base link
was estimated. All point are with respect the camera base link of the Realsense
camera. With the depth and camera intrisics parameters(K), the point(u,v)
of the image plane is projected to 3D space. This is done using the following
equations:

x =
(u− cx)

fx

y =
(v − cy)

fy

X = depth.at(u, v)

Y = x ∗ depth.at(u, v)
Z = y ∗ depth.at(u, v)

where
• u,v position of point of interest in pixel
• cx, cy is the optical center of the camera in pixels(intrinsic parameter)
• fx, fy are the focal length of the camera(intrinsic parameter)

5

1.2.2 Mean filtering

To remove noise produced from the 3D pose estimation, a mean filter was
used. It consists of replacing the 3D point obtained by the average of n previous
3d poses. A circular buffer(Figure 5) was used to implement the mean filter.

Fig. 5: Circular buffer

1.3 Visual servoing algorithm node

The visual servoing algorithm node is responsible for coordinating and man-
aging the control system in order to generate the necessary command to send
to the robot. To do so a state machine is used which contains the following
states:

• IDLE: In this state the robot arm goes to the initial state(Figure 6),
when the go init position is activated in the dynamic reconfigure GUI.

• START VISUAL SERVOING: In this state, the visual servoing
algorithm is executed. It is activated only when, the initial position
is reached and the start visual servoing box is checked in the dynamic
reconfigure GUI

• PRE GRASP,GRASP, POST GRASP: When the perform grasp
box is activated in the dynamic reconfigure GUI, this states is activated
in same order as stated. It moves the robot to grasp the tube

• END: When in this state, the robot returns back to ideal state.

6

Fig. 6: Initial configuration of the robo

1.3.1 Visual servoing state

The 3d pose obtained from the tube tracking node is transformed from the
camera base link to the base footprint node. This is because the whole body
controller receives commands with respect to the base footprint link. In order
to so, a static transform is added from the camera link to the arm tool link.
This is done in the launch file ”visual servoing alg.launch”.

Kalman Filter

Kalman Filter is used to estimate the 3D pose of the tube when it cannot
be measured directly due to sudden disappearance. The state vector X con-
sists of the 3D position and velocity of the tube with respect to the robot
base footprint link.

X = [x, y, z, roll, pitch, vx, vy, vz, wroll, wpitch]

The measurement vector Z consists of the current position of the tube with
respect to the robot base footprint link.

Z = [x, y, z, roll, pitch]

7

To build the state transition matrix, a strong assumption has been made
that the tube move in a linear way with constant velocity.(

I T
0 I

)
where

• dt is inverse of the frequency rate of the main control loop.
• T is the following matrix:

dt 0 0 0 0
0 dt 0 0 0
0 0 dt 0 0
0 0 0 dt 0
0 0 0 0 dt

• I being a 5 x 5 matrix
The observation model matrix H is :(

I 0
)

The process noise covariance matrix Q is
Ex 0 0 0 0
0 Ey 0 0 0
0 0 Ez 0 0
0 0 0 Eroll 0
0 0 0 0 Epitch

The error values are found experimentally. The kalman filter is implemented
as follows, when the tube is in frame and has not being previously detected
for a fixed amount of time(fixed in the code), the kalman filter is reinitialized.
On the contrary, if object is in frame and has been previously detected for a
fixed amount of time, the kalman filter is updated. The prediction process is
done regardless of the object been in frame or not but under the condition
that it has been detected for the fixed amount of time mentioned previously
or has been reinitialized. A pseudo-code can be seen in alg. 1.

8

Algorithm 1 Kalman filter implementation

found ← false
while visual servoing activated do

if found then
perform prediction

end if
if object in frame then

...
if not found then

reinitialize timeout
reinitialize state
found ← true

else
update kalman filter

end if
else

Update timeout
if timeout reached then

found ← false
end if

end if
if found then

control strategy()
end if

end while

Control strategy

In order to control the robot, different strategy are used as shown in Figure
1. First, in the safemode, the robot functionalities are shut down completely,
both base and body. This is activated when there is a large change in position
value of the tube. The other two controller, mobile base speed controller and
the WBC, are used based on the position of the end-effector. A a 3D virtual
box constraint in placed with respect to the initial position of the robot shown
in Figure 6.

The robot uses the WBC to control the arm and the torso, when the
arm is within the 3D box constraint. The WBC is a quadratic hierarchi-
cal solver that provided the inverse kinematics of the whole robot body. It
performs different tasks based on priorities. In the case of the Tiago robot,
the tasks with the highest priority are joint limit avoidance and self-collision
avoidance. This means that the user can command the robot’s end-effector
to go to a 3d point in space but this task has lower priority.A module
”tiago wbc controller modules/wbc body module” has been created to
make it easier to interact with the WBC. It allows the user to move the robot
in a straight line or perform a ptp trajectory. One issue with the WBC is that

9

the response of each axes is different, this is probably due to the task priority.
For example, the x axes response is slower compared to other axes. In order
to combat this problem, the WBC module is implemented as follows: when
the end-effector is close to the goal(error), the robot arm stops. Due to the
different response in the axes, the error can be specified for each axes.

bool moveTo(geometry msgs : : PoseStamped goal , bool
s t r a i g h t l i n e = false , bool check x = true , bool
check y = true , bool check z = true , bool
ch e ck o r i e n t a t i on = fa l se) ;

When the robot end-effector is out of the range of the 3D virtual box,
the base is controlled. It consists of a velocity controller where the commands
are rotaional and translational speed. A video demostration can be seen in link
to demo.

2 Computation time Study

To improve the system response time, a study of the computational time of
different task during the code was recorded. It is worth noting that the compu-
tational time for the display of the tube tracking node was added. Although,
this result is not taking into consideration during the computational study
because in a typical working demonstration, the display functionality would
be deactivated. It is used in this case for debug purposes.

The list of task of which the computational time was measured are as
follows:

• A: Time convert Ros image to opencv math
• B: Time find red color and obtain denoise image
• C: Time compute contour and 3d from 2d
• D: Time buffer computation
• E: Time between buffer computation and end of vision node
• F: Time convert Ros image to opencv math
• G: Time convert Ros image to opencv math
• H: Time convert Ros image to opencv math
• I: Time convert Ros image to opencv math

https://drive.google.com/drive/folders/1Rr6SjbD9I02Om3iljPnNeA5DsO2QCPGP?usp=sharing
https://drive.google.com/drive/folders/1Rr6SjbD9I02Om3iljPnNeA5DsO2QCPGP?usp=sharing

10

(a) WBC controller computation time[MS]

(b) WBC controller computation time[%]

Fig. 7: WBC controller computation time

11

(a) Base controller computation time[MS]

(b) Base controller computation time[%]

Fig. 8: Base controller computation time

12

(a) WBC + Base controller computation time[MS]

(b) WBC + Base controller computation time[%]

Fig. 9: WBC + Base controller computation time

As we can be observed, the task that takes longer is the task B, which in
almost all the different controls, takes 60 % of the overall computational time.
This makes sense because during this task, a lot of matrix operation is done on
the image. The other task(excluding the display task) have similar computa-
tional time. As the graph shows, the computational time is not influenced by
the type of controller used(WBC/base). Another possible reason which could
cause the system to have a slow response is the reaction of the controller.
Although this has not being tested yet. The data results and more graph can
be found in the file visual servoing data computation time

13

3 Conclusions

In this report, the algorithm needed to implement a virtual servoing using
the tiago was explained. It included both the detection and the robot control.
Although the system implemented works, improvement is needed to increase
the system’s reaction time.

References

[1] Cheng, E.D.-L.G.: A new method for solving 6d image-based visual ser-
voing with virtual composite camera model. IEEE-RAS International
Conference on Humanoid Robots (2014)

[2] Michels, T., Hochländer, A.: “a tutorial on visual servo control. TU
Darmstad (5), 651–670 (1996)

[3] Omodolor, S.O.: Position and depth estimation of the tube for visual-
servoing (2021)

	Methods
	Setup
	Tube tracking algorithm node
	Pose estimation
	Mean filtering

	Visual servoing algorithm node
	Visual servoing state
	Kalman Filter
	Control strategy

	Computation time Study
	Conclusions

